A Class of Diffusion Algorithms with Logarithmic Cost over Adaptive Sparse Volterra Network
نویسندگان
چکیده
In this Letter, we present a novel class of diffusion algorithms that can be used to estimate the coefficients of sparse Volterra network (SVN). The development of the algorithms is based on the logarithmic cost and l0-norm constraint. Simulations for Gaussian and impulsive scenarios are conducted to demonstrate the superior performance of the proposed algorithms as compared with the existing algorithms.
منابع مشابه
Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملSparse Least Mean Square Algorithm for Estimation of Truncated Volterra Kernels
The Volterra series model, though a popular tool in modeling many practical nonlinear systems, suffers from the problem of over-parameterization, as too many coefficients need to be identified, requiring very long data records. On the other hand, often it is observed that of all the model coefficients, only a few are prominent while the others are relatively insignificant. The sparsity inherent...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملA Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning
In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.08541 شماره
صفحات -
تاریخ انتشار 2016